Abstract

Cr-containing diamond-like carbon (Cr-DLC) nanocomposite coatings were synthesized by ion beam-assisted arc ion plating with varying hollow cathode ion source (HCIS) currents. The morphologies, compositions and microstructures were characterized by scanning electronic microscopy (SEM), atomic force microscopy (AFM), X-Ray photoelectron spectrometer (XPS), Raman spectroscopy, grazing incidence X-ray diffraction (GIXRD) and high-resolution transmission electron microscopy (HRTEM). Hardness and friction coefficient were investigated by using nanoindentation and ball-on-disc tribometer, respectively. With no HCIS current, the coating exhibits the maximal growth rate and a rough surface, as well as lower hardness and elastic modulus. With the increasing HCIS current from 40[Formula: see text]A to 80[Formula: see text]A, the growth rate and the content of chromium carbide decrease obviously, the [Formula: see text]/[Formula: see text] ratio increases initially to the maximum at the HCIS current of 60[Formula: see text]A, the highest hardness and elastic modulus are obtained at the HCIS current of 50[Formula: see text]A. It is also revealed that moderate HCIS current can reduce surface roughness obviously and promote tribological properties. The correlation of the HCIS current with the microstructure and performance of Cr-DLC coating has been established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.