Abstract
The evolution of two-dimensional (2D) electron phase-space holes (electron holes) has been previously investigated with electrostatic Particle-in-Cell (PIC) simulations, which neglect ion dynamics. The electron holes are found to be unstable to the transverse instability, and their evolution is determined by the combined action between the transverse instability and the stabilization by the background magnetic field. In this paper, the effect of ion dynamics on the evolution of an electron hole is studied. In weakly magnetized plasma (<em>Ω</em><sub>e</sub> < <em>ω</em><sub>pe</sub>, where <em>Ω</em><sub>e</sub> and <em>ω</em><sub>pe</sub> are electron gyrofrequency and plasma frequency, respectively), the electron hole is still unstable to the transverse instability. However, it evolves a little faster and is destroyed in a shorter time when ion dynamics is considered. In strongly magnetized plasma (<em>Ω</em><sub>e</sub> > <em>ω</em><sub>pe</sub>), the electron hole is broken due to the lower hybrid waves, and its evolution is much faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.