Abstract

Solutions of polyelectrolytes consisting of polycations and polyanions in equal proportions were studied in the present work. Due to the physical cross-links formed by the charged groups, physical gels were formed in such systems. The mechanical properties and structure of the obtained gels depending on the charge arrangement along the backbone and the dimensionless Bjerrum length λ were investigated. The response of the systems to a uniaxial affine deformation was studied first. It was found that the systems can be divided into three groups depending on the charge arrangement: showing an almost elastic response; showing a viscoelastic response with a very long relaxation time; and showing a weak viscoelastic response with a short relaxation time. Interestingly, no stable aggregates were formed in the systems with the charges located on spacers, probably because of the increased mobility of the charges in such systems. The obtained stress relaxation curves had different functional forms, indicating that the relaxation has at least two characteristic times, which are different for different systems. In order to understand the molecular nature of the observed mechanical response, the temporal evolution of the network structure of a system showing a viscoelastic response with a very long relaxation time was studied; the aggregates were found to be dynamic, which leads to the relaxation of the "subchains" conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.