Abstract

Swift heavy ion (SHI) irradiation of damaged germanium (d-Ge) layer results in porous structure with voids aligned along ion trajectory due to local melting and resolidification during high electronic energy deposition. The present study focuses on the irradiation temperature- and incident angle-dependent growth dynamics and shape evolution of these voids due to 100 MeV Ag ions irradiation. The d-Ge layers were prepared by multiple low-energy Ar ion implantations in single crystalline Ge with damage formation of ~7 displacements per atom. Further, these d-Ge layers were irradiated using 100 MeV Ag ions at two different temperatures (77 and 300 K) and three different angles (7°, 30° and 45°). After SHI irradiation, substantial volume expansion of d-Ge layer is detected which is due to formation of nanoscale voids. The volume expansion is observed to be more in the samples irradiated at 77 K as compared to 300 K at a given irradiation fluence. It is observed that the voids are of spherical shape at low ion irradiation fluence. The voids grow in size and change their shape from spherical to prolate spheroid with increasing ion fluence. The major axis of spheroid is observed to be aligned approximately along the ion beam direction which has been confirmed by irradiation at three different angles. The change in shape is a consequence of combination of compressive strain and plastic flow developed due to thermal spike generated along ion track. Post-SHI irradiation annealing shows increase in size of voids and reversal of shape from prolate spheroid towards spherical through strain relaxation. The stability of voids was studied with the effect of post-growth annealing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call