Abstract

The effect of NaI on hydrogenation of diphenylacetylene catalyzed by the water-soluble [{RuCl(mtppms-Na)2}2(µ-Cl)2] (1) (mtppms-Na = meta-monosulfonated triphenylphosphine sodium salt) is reported. Hydrogenations were performed under mild conditions (P(H2) = 1 bar, T = 50–80 ℃) in aqueous–organic biphasic reaction mixtures wherein the catalyst was dissolved in aqueous phase of various pHs. In acidic solutions, addition of NaI to 1 + mtppms-Na increased the selective conversion of diphenylacetylene to stilbenes from 10% to 90% but did not effect the high Z-selectivity (up to 98%). In contrast, in basic solutions the major product was diphenylethane (up to 70%), and the yield of E-stilbene exceeded that of the Z-isomer. 1H and 31P NMR measurements revealed that depending on the absence or presence of NaI, the catalytically active Ru(II)-hydride species in acidic solutions was [RuHCl(mtppms-Na)3], 2, or [RuHI(mtppms-Na)3], 5, respectively, while in basic solutions, both 2 and 5 were hydrogenated further to yield the same hydride species, cis,fac-[RuH2(H2O)(mtppms-Na)3]. [RuHI(mtppms-Na)3] proved superior to [RuHCl(mtppms-Na)3] as a catalyst for the selective hydrogenation of cinnamaldehyde to dihydrocinamaldehyde. This finding was explained by a facile formation of a (putative) dihydrogen complex [Ru(H2)I2(H2O)(mtppms-Na)2] intermediate, resulting in fast heterolytic activation of H2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call