Abstract
Rotational dynamics of two structurally similar hydrophobic solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), has been investigated in 30% wv aqueous solution of triblock copolymer, poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20) as a function of temperature. This study has been undertaken in an attempt to explore how the dynamics of a solute molecule solubilized in a copolymer solution is influenced when it undergoes sol-to-gel transition. It has been observed that the anisotropy decays of both DMDPP and DPP can be described by biexponential functions in the sol as well as in the gel phase. This observation has been rationalized on the basis of the probe molecule undergoing two different kinds of motion rather than being located in two different regions of the micelle. Even in the gel phase, which results as a consequence of micelle-micelle entanglement due to an increase in their volume fraction, the rotational relaxation of the solutes is similar to that observed in the micellar solution. The outcome of this work indicates that even though these gels have very high macroscopic viscosities and hence do not flow, the microenvironments experienced by the solutes are akin to that of a micellar solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.