Abstract

The effects of incorporation of heterocyclic moieties into fluorinated poly(ether imide) membranes on their gas transport properties were investigated. Four novel fluorinated poly(ether imide) (PEI) membranes were prepared from four different bis(ether amine)s namely, 4,4-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]biphenyl (BAQP); 1,4-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl] benzene (BATP); 2,6-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]pyridine (BAPy) and 2,5-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]thiophene (BATh), and a fluorinated dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane (6FDA) as a common dianhydride. Gas transport properties of these membranes were measured to investigate the effect of chemical structure on gas permeation and diffusion processes over four different gases (e.g., CH 4, N 2, O 2 and CO 2) at different temperatures (e.g., 35, 45 and 55 °C) at an applied pressure of 3.5 bar. It has been found that at 35 °C the permselectivities of BAPy and BATh based polymeric membranes (6.4 and 6.6, respectively) toward O 2 relative to N 2 are higher in comparison to BAQP and BATP (5.5 and 5.3, respectively) containing PEI membranes. The permeability coefficient of CO 2 for BAPy and BATh (51.92 and 45.31, respectively at 35 °C) based PEI membranes were observed to be much higher than BAQP and BATP based membranes (36.61 and 33.51, respectively at 35 °C) with comparable selectivity values of CO 2 relative to CH 4. All these membranes exhibit higher CO 2/CH 4 selectivity than those of common glassy polymers e.g., cellulose acetate, polysulfone and polycarbonate. The order of permeability of these gases was found as CO 2 > O 2 > N 2 > CH 4. The temperature dependency of permeation and diffusion processes enables to calculate the activation energies of the permeation and diffusion processes for these four different gases through four PEI membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.