Abstract

Electrochemical water (H2O) splitting is one of the most promising technologies for energy storage by hydrogen (H2) generation but suffers from the requirement of high overpotential in the anodic half-reaction (oxygen evolution), which is a four-electron process. Though transition-metal oxides and oxysulfides are increasingly researched and used as oxygen evolution electrocatalysts, the bases of their differential activities are not properly understood. In this article, we have synthesized NiCo2O4 and NiCo2OxS4–x by a chemical bath deposition technique, and the latter has shown better oxygen evolution performance, both in terms of stability and activity, under alkaline conditions. Comprehensive analysis through time-dependent cyclic voltammetry, microscopy, and elemental analysis reveal that the higher activity of NiCo2OxS4–x may be attributed to the lower metal–sulfur bond energy that facilitates the activation process to form the active metal hydroxide/oxyhydroxide species, higher electrochemically active surface area, higher pore diameter and rugged morphology that prevents corrosion. This work provides significant insights on the advantages of sulfur-containing materials as electrochemical precatalysts over their oxide counterparts for oxygen evolution reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call