Abstract

Advanced composite laminates (i.e. glass composite laminates) are highly susceptible to low velocity impact, and the induced damage failures substantially reduced their residual mechanical properties and safe-service life during their application. Therefore, experiments and simulation efforts to predict their low-velocity impact damages and energy absorbing have significant importance in composite structures design. In this regards, experimental and finite element analysis (FEA) with aiding Abaqus software were respectively performed to investigate the influence of yarn hybridisation on the response of composite laminates under low velocity impact. The hybrid yarns, which consisted of S-glass and polypropylene yarns have been used to manufacture two types of composites; non-crimp cross-ply hybrid yarns and twill hybrid fabric composites. Additionally, for comparison, the non-crimp cross-ply and twill fabric composite laminates have been made from glass fibres only. The vacuum infusion resin process has been adopted to manufacture these composite laminates. The impact performance of composite laminates has been investigated using low-velocity impact at 15 J, 35, and 50 impact energy levels. The numerical analysis was executed using Abaqus/Explicit and Hashin failure criteria and continuum damage mechanics by using homogenous shell were adopted to simulate the intra-laminar damage in layers. Meanwhile, standard cohesive inter-laminar interfaces that inserted between composite layers with quadratic stress failure criteria have been used to model delamination failures. The numerical results regarding impact force-time, displacement–time and energy-time histories plots, as well as the damage evolution behaviour of matrix crack and fibre fracture, presented an agreement with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.