Abstract
The present study examined in the rat the effect of a partial lesion of the nigrostriatal dopaminergic pathway induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA), on the dopaminergic innervation of the cortex and the globus pallidus as revealed using tyrosine hydroxylase (TH) immunoreactivity. Twenty-eight days after unilateral injection of 6-OHDA into the dorsal part of the striatum, TH-positive fiber density was reduced by 41% in the dorsal and central part of the structure, and was accompanied by a retrograde loss of 33% of TH-positive neurons in the substantia nigra (SN), while the ventral tegmental area was completely spared. In the SN, TH-positive cell loss was most severe in the ventral part of the structure (−55%). In the same animals, a substantial loss of TH-positive fibers was evident in the dorsal part of the globus pallidus, and involved both thick fibers of passage and thin varicose terminal axonal branches. In the cortex, a loss of TH-positive fibers was prominent in the cingulate area, moderate in the motor area and less affected in the insular area, while the noradrenergic innervation revealed using dopamine-β-hydroxylase immunoreactivity was preserved in all of these cortical subregions. These results demonstrate that the intrastriatal 6-OHDA lesion model in rats produces a significant loss of dopaminergic axons in extrastriatal structures including the pallidum and cortex, which may contribute to functional sequelae in this animal model of Parkinson's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.