Abstract

Three series of novel trisubstituted guanidines containing at least one hydrogen bond accepting (HBA) group were modelled using B3LYP/6–311+G(2df,p)//B3LYP/6–31G(d) calculations. Their structure was modified by incorporating a variety of different HBA groups covering a wide range of hydrogen bond strengths. Calculated gas-phase basicities (GBs) ranged from 1035 to 1181 kJ mol–1 depending on the nature of the substituent. To rationalise changes in the GB, a correlation of GB against two independent variables (pKHB and σ4B) was conducted where pKHB served as the descriptor of the hydrogen bond strength and σ4B was introduced to describe changes in the GBs in the open-chain model systems, i.e. in the absence of intramolecular hydrogen bond (IMHB), caused by the electronic effect of the propyl-HBA substituent. A very good correlation of the calculated gas-phase basicities against these two independent variables was established for all three sets of the bases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call