Abstract

BackgroundLactoferricin (Lfcin) is an antimicrobial activity center of lactoferrin, produced by hydrolysis from the N-terminal of lactoferrin. It was hypothesized that the intramolecular disulfide bond in Lfcin could affect its antibacterial function through influencing its molecular structure. To prove this hypothesis, bovine Lfcin (bLfcin) and its two derivatives, bLfcin with an intramolecular disulfate bond (bLfcin DB) and bLfcin with a mutation C36G (bLfcin C36G), were synthesized, purified, and identified. The circular dichroism spectra of the peptides were detected in solutions with different ionic and hydrophobic strength. The antibacterial activity of the peptides against Trueperella pyogenes, separated from cow milk with mastitis, were determined.ResultsThe secondary structure of bLfcin DB showed more β-turn and less random coil than the other peptides in H2O, similar ratios of secondary structures with bLfcin and bLfcin C36G under ionic conditions, and close percentages of secondary structure with bLfcin under hydrophobic conditions. The synthetic peptides exhibited strong antimicrobial activity against T. pyogenes isolates, T. pyogenes ATCC 19,411, and E. coli ATCC 25,922. The antimicrobial activities of the three peptides were greater against T. pyogenes than against E. coli, and bLfcin DB exhibited higher antibacterial activity compared with its derivatives.ConclusionsThe intramolecular disulfide bond could change the molecular structure of bLfcin under alternative ionic strengths and hydrophobic effects, and the formation of the disulfide bond is beneficial to executing the antibacterial function of bLfcin.

Highlights

  • Lactoferricin (Lfcin) is an antimicrobial activity center of lactoferrin, produced by hydrolysis from the N-terminal of lactoferrin

  • The chromatographic profiles determined by reverse phasehigh performance liquid chromatography (RP-HPLC) exhibited a purity of more than 95%

  • It is a consensus that most Antimicrobial peptide (AMP) are composed of cationic amino acids to promote selective binding to anionic surfaces of bacteria and hydrophobic amino acids to facilitate partitioning into bacterial membranes [26]. bovine Lfcin (bLfcin) has eight basic amino acids, including five arginines and three lysines

Read more

Summary

Introduction

Lactoferricin (Lfcin) is an antimicrobial activity center of lactoferrin, produced by hydrolysis from the N-terminal of lactoferrin. It was hypothesized that the intramolecular disulfide bond in Lfcin could affect its antibacterial function through influencing its molecular structure. The resistance of pathogenic bacteria to conventional antimicrobial agents has become an increasingly serious threat to human public health [1, 2]. The multi-functional mechanisms of AMPs reduce the potential to develop resistance of bacteria [6]. Based on this regard, peptides from host defense can be considered as molecular templates to design antibacterial agents to circumvent the increasing resistance of some pathogens

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call