Abstract

6-Nitronoradrenaline, a bioactive compound recently identified in the brain, is known to inhibit catechol-O-methyltransferase. To study its effect on dopamine metabolism, it was administered into rat striatum via a microdialysis probe. Other nitrated catechols (6-nitrodopamine, 6-nitro-DOPAC and 5-nitro-HVA) were studied for comparison. Tolcapone, a selective catechol-O-methyltransferase inhibitor, was used as a positive reference compound. Both 6-nitronoradrenaline and tolcapone increased striatal extracellular dopamine levels during the perfusion (at 100 μM concentration but not at 10 μM) and decreased the efflux of homovanillic acid. Tolcapone, but not other nitrated catechols, increased 3,4-dihydroxyphenylacetic acid efflux. None of the compounds inhibited MAO-B activity at 100 μM or lower. At 1 mM, 6-nitrodopamine inhibited MAO-B by 60%. Compared to tolcapone, other nitrated catechols were very weak COMT inhibitors in vitro. Neither tolcapone nor 6-nitronoradrenaline modified the metabolism of l-dopa which was given peripherally. In binding studies, both 6-nitronoradrenaline and other nitrocatechols failed to affect the dopamine transporter even at high μmolar concentrations. In conclusion, exogenous 6-nitronoradrenaline can act as a COMT inhibitor in the striatum and elevate striatal dopamine levels without inhibiting dopamine reuptake. Whether endogenous 6-nitronoradrenaline can be formed also in vivo in the striatum and act as a regulator of dopaminergic tone remains to be determined

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.