Abstract
Central chemosensitive neurons increase their firing rate (FR) upon exposure to hypercapnia. Currently, pHi is believed to be the major signal in the chemosensitive (CS) response; however, a new model has been proposed suggesting that multiple factors (such as Ca++, CO2, pHi, and pHo) contribute to the CS response. While there is evidence for a significant role of pHi in the CS response, we hypothesize that hypercapnic acidosis (HA) can still increase FR even with no change in pHi. To test this hypothesis, we developed a method to clamp pHi using rapid diffusion of the weak acid, acetic acid, through the cell membrane according to the relationship: pHi = pHo + log ([C2H3O2] i/[C2H3O2] o). Pontine brainstem slices (300 μm) were cut from neonatal rat pups (P4-P16). FR of LC neurons was measured with whole cell patch pipettes, pHi was measured by fluorescence imaging using the dye pyranine, and neurons were loaded from the patch pipette with 50 mM acetate. Extracellular acetate was varied to set pHi at desired values using the weak acid diffusion technique. We eliminated pHi decreases (0.07 ± 0.06 pH unit, p>0.05, n=8) of LC neurons upon exposure to HA (15% CO2, pHo 7.0) compared to the normal response (0.25 ± 0.03 pH unit, p<0.05, n=20). Despite pHi clamping, HA induced an increase in FR (CS index = 144 ± 14%, n=7) similar to controls (140 ± 5%, n=17). While a decrease in pHi is sufficient to elicit the chemosensitive response, these data indicate that intracellular acidification is not required. A chemosensitive response to hypercapnia without a change in pHi strongly supports the multiple factors model of chemosensitivity. [NIH grants RO1 HL56683 and F32 HL80877].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.