Abstract
BackgroundTo understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 μs molecular dynamics (MD) simulation at 310 K.ResultsAfter around 600 ns, the loop model started a transition to a “very inactive” conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein’s binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies.ConclusionsThe essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the “very inactive” state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes.
Highlights
To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol
Presence of ICL3 affects Root mean square deviation (RMSD) and loop mobility The difference between loop and clipped model dynamics is illustrated in the root mean square deviation
The missing intracellular loop ICL3, which is known to interact with the G protein at the cytoplasmic side, has not been considered or elaborated so far in these studies
Summary
To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). The nanobody-stabilized active state of β2AR in complex with G-protein, has been solved by Rasmussen and his coworkers (PDB:3SN6) [10,11]. Still, these static pictures of the receptor remain insufficient to describe the dynamic character of the receptor, which governs the function. Many questions remain on these multiple, ligand-specific conformational states of β2AR with different levels of activity from fully active to fully inactive, which induce distinct signaling pathways
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.