Abstract
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses, including electrical conductivity, mechanical properties, local corrosion properties, and slow strain rate tensile stress corrosion tests. Microstructure characterization techniques such as metallographic microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were also employed. The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging, and it even exceeds 700 MPa. Furthermore, the yield strength increases by 52.7 MPa, reaching 654.8 MPa after T6I6 aging treatment. The maximum depths of intergranular corrosion (IGC) and exfoliation corrosion (EXCO) decrease from 116.3 and 468.5 µm to 89.5 and 324.3 µm, respectively. The stress corrosion factor also decreases from 2.1% to 1.6%. These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance. Similarly, when the alloy is treated with T6I4, T6I6 and T6I7 aging, the sizes of grain boundary precipitates (GBPs) are found to be 5.2, 18.4, and 32.8 nm, respectively. The sizes of matrix precipitates are 4.8, 5.7 and 15.7 nm, respectively. The atomic fractions of Zn in GBPs are 9.92 at.%, 8.23 at.% and 6.87 at.%, respectively, while the atomic fractions of Mg are 12.66 at.%, 8.43 at.% and 7.00 at.%, respectively. Additionally, the atomic fractions of Cu are 1.83 at.%, 2.47 at.% and 3.41 at.%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.