Abstract
AbstractWe present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF B in NH (B in SH) in most local seasons under both signs of IMF B. For B in NH (B in SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During B and B in NH (B and B in SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.18 0.09 in winter and 1.17 0.09 in autumn. During B and B in NH (B and B in SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.16 0.07 for FAC. We also find an explicit B effect on auroral currents in a given hemisphere: on average B in NH and B in SH causes larger currents than vice versa. The explicit B effect on divergence‐free current during IMF B is in very good agreement with the B effect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.