Abstract

The potential of cathodic protection of steel with composite coatings based on polystyrene (PS) filled by highly dispersed powders of zinc (Zn) of different forms and dispersivities is investigated. The potential for all PS/Zn systems with a low content of filler is shown to be less than for pure metal; as some critical value (the percolation threshold) is reached, the negative values of potential increase abruptly and become higher in absolute value than the potential of pure metal. The threshold zinc contents are found to depend on the particle shape and rise from 9 to 30 vol% upon transitioning from spear-shaped to spherical particles. The electrochemical protection properties of a composite coating are correlate with the enthalpy of mixing of filled composites. The enthalpy of mixing in regions of low filling is shown to be negative, indicating strong interphase interaction; that in regions of high filling is positive. The positive enthalpy of mixing corresponds to compositions that generate the potential of cathodic protection. It is found that an increase in the concentration range of positive values of a composition’s enthalpy of mixing occurs symbatically with a decrease in the threshold concentration of metallic zinc within the composition. We conclude that cathodic protection by zinc-filled polymeric composites is due to weak interphase interaction that results in the aggregation of particles of metallic zinc within a polymeric matrix and the appearance of an infinite cluster. In the case of PS/Zn compositions, it is shown that the infinite cluster appears at enthalpies of mixing greater than 0.6 J/g of the composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.