Abstract
In this paper, we study the combined effect of internal-heating and time-periodic gravity modulation on thermal instability in a viscous fluid layer, heated from below. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the fluid layer. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg–Landau equation derived for the stationary mode of convection. Effects of various parameters such as internal Rayleigh number, Prandtl number, and amplitude and frequency of gravity modulation have been analysed on heat transport. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further, it is found that the heat transport can be controlled by suitably adjusting the external parameters of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.