Abstract

Solid-phase reactions at the interface between Al-Si-Cu and reactively sputtered TiN thin films have been investigated by cross-sectional transmission electron microscopy, Auger electron spectroscopy, and x-ray diffraction. In the case in which the internal stress in the TiN thin film is extremely compressive at 209 MPa, a very thin amorphous Al-Ti-Si ternary compound layer (a-Al-Ti-Si) containing microcrystallites, about 4 nm thick, is found to form at the Al-Si-Cu/TiN interface by annealing at the temperature of 450 °C for 30 min. On the other hand, in the case of a minimally compressive stress of 21 MPa, it is in a marked contrast to form a polycrystalline TiAl3 layer (c-TiAl3) on the amorphous intermediate layer ununiformly. Behavior of the internal stress in the latter TiN film as a function of heating and cooling temperature shows nonlinear characteristics, indicating that a rearrangement of the TiN film actively occurs even at low temperatures below 300 °C. Monte Carlo simulations of internal microstructures based on a ballistic aggregation model suggest to us that a short migration length corresponding to the condition of low internal stress brings about numerous vacancies and disordered regions in the TiN films. It is considered that the rearrangement of the TiN films with a diffusion of Ti atoms governs the solid-phase reactions at the Al-Si-Cu/TiN interfaces and that the formation of the bilayer of c-TiAl3/a-Al-Ti-Si originates in phase separation of the resultant Al-Ti mixing layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.