Abstract

We studied time-resolved carrier recombination in InAs/GaAs quantum dot (QD) solar cells. The electric field in a p-i-n diode structure spatially separates photoexcited carriers in QDs, strongly affecting the conversion efficiency of intermediate-band solar cells. The radiative decay lifetime is dramatically reduced in a strong electric field (193 kV/cm) by efficient recombination due to strong carrier localization in each QD and significant tunneling-assisted electron escape. Conversely, an electric field of the order of 10 kV/cm maintains electronic coupling in the stacked QDs and diminishes tunneling-assisted electron escape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call