Abstract

Abstract Local postweld heat treatment (PWHT) is usually employed in field fabrication of large-sized ASME SA-335 Grade P92 steel pipes. Internal air flow in pipes that arise from field fabrication can result in considerable convection losses on the inside surface of the pipe when the pipe is not strictly sealed off. Welding and local PWHT experiments of a large diameter P92 steel pipe were conducted both with and without internal air flow, and temperature field of both sides of the pipe was measured. The conjugate heat transfer between the pipe and the internal air is simulated using computational fluid dynamics (CFD) method. The effect of internal air flow on temperature field was further investigated. Results indicate that temperature gradient along through-thickness direction and axial direction during local PWHT is significantly increased due to internal air flow. The increasing rate of temperature difference between inner and outer surface at weld centerline to internal air velocity is about 14.5 °C/(m s−1). The maximum temperature is no longer located at the weld centerline, which will lead to a risk of overheating. The temperature drop is severer in the air inlet side than air outlet side at same distance from weld centerline. For local PWHT to be successful, the internal air flow should be strictly limited during local PWHT; otherwise, the width of heated band (HB) should be extended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.