Abstract
4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H2N-C6H4-S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm-1, and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.