Abstract

We studied the effect of intermittent normobaric hypoxia on the formation of adaptive signs and state of mitochondrial enzymes in the cerebral cortex of rats with different resistance to hypoxia. Kinetic parameters for mitochondrial enzymes in the substrate region of the respiratory chain of the cerebral cortex underwent various changes in low resistant and highly resistant rats over the first 2 h after 1-h intermittent normobaric hypoxia. Low resistant animals were characterized by more effective functioning of rotenone-sensitive NADH-cytochrome C reductase and succinate-cytochrome C reductase under conditions of increased reduction status of the cell. These features correlated with the increase in the general resistance of animals. Significant changes in kinetic properties of mitochondrial enzymes and signs of the development of resistance were not found in highly resistant rats. Reciprocal relations between mitochondrial enzyme complexes in the substrate region of the respiratory chain probably play a role of the signal regulatory mechanism, which mediates tissue-specific and general resistance of rats under conditions of intermittent normobaric hypoxia. These effects did not depend on oxygenation of the inhaled gas mixture during the inter-hypoxic period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.