Abstract
The aim of the present study was to investigate the effect of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) gene co-silencing in mouse gastric cancer (GC) cells. Respectively, three pairs of liposome-encapsulated IL-1β and TNFα small interfering RNA (siRNA) were transfected into the mouse GC cell line MFC. The most effective siRNA, as identified by reverse transcription-polymerase chain reaction, was used for co-suppression of IL-1β and TNFα genes. The activities of cell proliferation, colony formation and migration were determined by the Cell Counting Kit 8 method, colony formation assay and Transwell assay, respectively. Protein array analysis was performed to identify the differentially expressed factors. The possible signaling pathways of the various factors targeting the genes were identified by pathway enrichment analysis using KOBAS 2.0. siRNA1 and siRNAc were the most effective interference sequences for IL-1β and TNFα, respectively. Following co-transfection of siRNA1 and siRNAc, the expression of IL-1β and TNFα was inhibited at the mRNA and protein levels, and the cell proliferation, colony forming and migration abilities were reduced (P<0.05). The expression of inflammatory factors, including chemokine ligand 5, cyclooxygenase-2, IL-6, transforming growth factor β, IL-17A, matrix metallopeptidase 9 and stromal cell-derived factor 1α were also inhibited (P<0.05). These factors are mainly involved in the rheumatoid arthritis pathway, the intestinal immune network for IgA production, the TNF signaling pathway and the inflammatory bowel disease pathway. IL-1β and TNFα gene silencing inhibits the proliferation and migration of MFC. The mechanisms may involve multiple inflammatory factors that participate in the signaling pathways of tumor tissue inflammation, the immune network and TNF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.