Abstract
Micromagnetic simulations have been performed to simulate dynamic hysteresis loops in perpendicular media. Thermal energy barrier distributions have been calculated. For a fixed percentage of magnetization switched, a linear variation between the scaled applied field Ha(t)/HK and ln(f0t)1/2 is found. Without including intergranular magnetostatic interactions, intergranular exchange coupling reduces the thermal energy barrier distribution width, compared to the physical volume distribution width. However, the magnetostatic interactions increase the energy barrier width substantially. The increase is significantly reduced at smaller magnetostatic interactions. For the effective volume of 50% magnetization switched (V50), the results show V50=〈V2〉 almost independent of intergranular magnetostatic and exchange interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.