Abstract

Flexible electronic devices are often subjected to large and repeated deformation, so that their functional components such as metal interconnects need to sustain strains up to tens of percent, which is far beyond the intrinsic deformability of metal materials (~1%). To meet the stringent requirements of flexible electronics, metal/elastomer bilayers, a stretchable structure that consists of a metal film adhered to a stretchable elastomer substrate, have been developed to improve the stretch capability of metal interconnects. Previous studies have predicted that the metal/elastomer bilayers are much more stretchable than freestanding metal films. However, these investigations usually assume perfect bonding between the metal and elastomer layers. In this work, the effect of the metal/elastomer interface with a finite interfacial stiffness on the stretchability of bilayer structures is analyzed. The results show that the assumption of perfect interface (with infinite interfacial stiffness) may lead to an overestimation of the stretchability of bilayer structures. It is also demonstrated that increased adhesion between the metal and elastomer layers can enhance the stretchability of the metal layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call