Abstract

Numerical simulations of phase decomposition in thin films on patterned substrates are presented for a binary alloy in order to study the influence of substrate composition on microstructural evolution. For systems with a substrate composition less than the film composition, a preferential segregation ofA to the interface was observed and no phase decomposition occurred within the film. For patterned systems with a substrate composition exceeding the film composition, theB-rich phase was able to grow by a barrierless transformation for a range of film compositions outside the chemical spinodal. The number of precipitates which formed on the mesa, the dihedral angles at the three-phase trijunctions, and the resulting microstructure within the film were shown to be sensitive to the substrate composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.