Abstract

The sensitivity of optical molecular orientation measurements to assumptions regarding thin film refractive index was investigated. Specifically, the influence of the interfacial refractive index on second harmonic generation (SHG) and linear dichroism measurements made in a total internal reflection (TIR) geometry was probed for five distinct molecular systems. The five molecular thin films ranged from weakly adsorbed species in equilibrium with solution to covalently bound molecules. Polarization data from the two techniques were fit using a range of assumed interfacial refractive indices. Surprisingly, a linear relationship between the difference in calculated apparent orientation angle and the difference in solvent-prism refractive index was observed. The trend indicates that for a TIR geometry, the error introduced by the thin film refractive index is negligible when the difference in solvent and prism refractive indices is less than approximately 0.08. However, there are clearly cases, such as a glass/air interface, in which assumptions regarding the thin film refractive index can result in significant error in the extracted orientation angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.