Abstract

Image-analyzing interferometry was used to investigate the dynamics of the dewetting meniscus of a partially wetting fluid on a modified quartz surface during dropwise condensation. The vivid difference in the behavior of the retracting meniscus with respect to its variation in apparent contact angle and curvature after the merger of the drop with the meniscus was found to depend on the wettability of the surface. On the hydroxylated quartz surface, the meniscus shed mass during retraction. The dewetting velocity decreased with time. On a slightly hydrophobic quartz surface, the meniscus showed a curvature gradient in the axial direction during drop merger and that gradient decreased as the meniscus moved towards the corner. The dewetting of the meniscus is discussed using the interfacial concepts of spreading and the Kelvin–Clapeyron phase change model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.