Abstract

Abstract A model is presented for p–n hetero-junction solar cells in which interface recombination is the dominant diode current transport mechanism. The model explains the large diode ideality factor (n>2) and the increased saturation current density in terms of increased density of interface states Nir. Furthermore, the model allows us to explain the non-translation between illuminated and dark J–V characteristics. The explanation is based on the assumption that, for high interface state density values, both the depletion layer width and the diffusion voltage in the p- and n-side of the junction are functions of Nir. The interface recombination leads to lower values of the open-circuit voltage, short-circuit current density, and fill factor. These results are illustrated by numerical calculations of solar cell parameters and compared with experimental data achieved for ZnO/CdS/CuGaSe2 single-crystal solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.