Abstract

The effect of intercritical tempering temperature (TT) on the microstructure evolution and mechanical properties of 3.6Mn medium manganese steel, which contained martensite and austenite, was investigated by X-ray diffraction, electron backscattering diffraction and transmission electron microscopy, as well as Thermo-Calc calculation. The results showed that the volume fraction of reversed austenite (RA) increased firstly and then decreased with the increasing TT in the range of 550~650 °C. When the TT was below 620 °C, lath-like RA with good stability was mainly displayed between martensite laths and its size is about 100 nm. When the TT was higher than 650 °C, larger-size and block RA was formed in the martensite block boundaries, and part of the RA transformed into fresh martensite during cooling. The yield strength and tensile strength of the experimental steels decreased gradually as the TT increased, but the tensile strength increased gradually with the formation of block RA and fresh martensite. Lath-like RA could significantly improve the toughness and plasticity with slight loss of yield strength, but block RA decreased slightly them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call