Abstract

The synthesis, structure, and properties of bischloro, μ-oxo, and a family of μ-hydroxo complexes (with BF4 (-) , SbF6 (-) , and PF6 (-) counteranions) of diethylpyrrole-bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ-oxo complexes are in the high-spin state (S=(5) /2 ). However, the two iron centers in the diiron(III) μ-hydroxo complexes are equivalent with high spin (S=(5) /2 ) in the solid state and an intermediate-spin state (S=(3) /2 ) in solution. The molecules have been compared with previously known diiron(III) μ-hydroxo complexes of ethane-bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X-ray structural parameters between diethylpyrrole and ethane-bridged μ-hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane-bridged μ-hydroxo complex, both iron centers become equivalent in the diethylpyrrole-bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole-bridged diiron(III) μ-oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=-137.7 cm(-1) ), although the coupling constant is reduced to only a weak value in the μ-hydroxo complexes (J=-42.2, -44.1, and -42.4 cm(-1) for the BF4 , SbF6 , and PF6 complexes, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call