Abstract
A large‐eddy simulation model is used to examine the impact of the intense cross‐inversion wind shear on the stratocumulus cloud structure. The wind shear enhanced entrainment mixing effectively reduces the cloud water and thickens the inversion layer. It leads to a reduction of the turbulence kinetic energy (TKE) production in the cloud layer due to the weakened cloud‐top radiative cooling and the formation of a turbulent and cloud free sublayer within the inversion. The thickness of the sublayer increases with the enhanced wind shear intensity. Under the condition of a weaker inversion, the enhanced shear mixing within the inversion layer even lowers the cloud‐top height and reduces the entrainment velocity. Finally, increasing wind shear or reducing inversion strength tends to create an inversion layer with a constant bulk Richardson number (∼0.3), suggesting that an equilibrium value of the Richardson number is reached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.