Abstract

The theoretical problem addressed in the present work involves the effect of integral feedback on a class of uncertain nonlinear systems. The intriguing aspects of the problem arise as a result of transient constraints combined with the presence of parametric uncertainty and an unknown nonlinearity. The motivational problem was the state-of-charge (SOC) control strategy for load-following in solid oxide fuel cells (SOFCs) hybridized with an ultracapacitor. In the absence of parametric uncertainty, our prior work established asymptotic stability of the equilibrium if the unknown nonlinearity is a passive memoryless function. In contrast, this paper addresses the realistic scenario with parametric uncertainty. Here, an integral feedback/parameter adaption approach is taken to incorporate robustness. The integral action, which results in a higher-order system, imposes further restriction on the nonlinearity for guaranteeing asymptotic stability. Furthermore, it induces a limit cycle behavior under additional conditions. The system is studied as a Lure problem, which yields a stability criterion. Subsequently, the describing function method yields a necessary condition for half-wave symmetric periodic solution (induced limit cycle).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.