Abstract

A Fully Hydraulic Variable Valve System is described in this article which can achieve continuous variation in valve lift, duration, and timing. The system was installed in a four-cylinder port fuel injection spark ignition engine and achieved unthrottled load control through early intake valve closing. The in-cylinder pressure measured experimentally showed that pumping losses of the unthrottled spark ignition engine at 2000 r/min and 0.189 MPa brake mean effective pressure was reduced by 85.4% compared with the throttled spark ignition engine. However, its slow and unstable combustion reduced the indicated thermal efficiency. Compared with the throttled spark ignition engine, the amount of residual exhaust flowing back into the intake port was greatly reduced at the early stage of the intake process. Consequently, it negatively influenced fuel evaporation and fuel–air mixing processes in the intake port of the port fuel injection spark ignition engine and decreased the flow of in-cylinder gases, which resulted in a low combustion rate. A new centrosymmetric helical valve is proposed in this article to improve the fuel–air mixing and combustion rate of the unthrottled spark ignition engine. The experiments demonstrate that the helical valve can generate a strong intake swirl at small intake valve lift. It helps to increase combustion rate and lower cycle-to-cycle variation, which improves indicated thermal efficiency and fuel economy of the unthrottled spark ignition engine at low load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.