Abstract
Pancreaticobiliary secretion is reduced during acute hyperglycemia. In nondiabetics, this inhibitory effect also may result from hyperinsulinemia. Therefore we investigated the effects of acute hyperglycemia and euglycemic hyperinsulinemia on basal and cholecystokinin (CCK)-stimulated pancreaticobiliary secretion. Nine healthy volunteers (age, 22-52 years) were studied on three occasions in random order during (a) intravenous saline (control), (b) hyperglycemic hyperinsulinemic clamping (HG; plasma glucose at 15 mM), and (c) euglycemic hyperinsulinemic clamping (HI; plasma insulin at 150 mU/L, glucose at 4-5 mM). Duodenal outputs of bilirubin, amylase, trypsin, and bicarbonate were measured under basal conditions and during CCK infusion (0.25 and 0.5 IDU/kg/h). Basal pancreaticobiliary secretion was significantly (p < 0.05) reduced during both HG and HI. During low-dose CCK stimulation, HG significantly (p < 0.05) reduced bilirubin and trypsin output compared with control. In contrast, HI did not significantly reduce pancreatic enzyme and bilirubin output during low-dose CCK infusion. During high-dose CCK infusion, neither HI nor HG influenced pancreatic enzyme and bilirubin output. Pancreatic bicarbonate output was not influenced by CCK and remained significantly (p < 0.05) reduced during HI and HG compared with control. It is concluded that during both acute hyperglycemia and euglycemic hyperinsulinemia, basal pancreaticobiliary secretion is significantly reduced. CCK-stimulated pancreatic enzyme and bilirubin output is significantly reduced only during hyperglycemia. The inhibitory effect of hyperglycemia on pancreaticobiliary secretion in healthy volunteers may occur independent of insulin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.