Abstract

Carbon dioxide, the primary gas used to establish a pneumoperitoneum, causes numerous systemic effects related to cardiovascular function and acid-base balance. Therefore, the use of other gases, such as helium, has been proposed. Furthermore, the pneumoperitoneum itself, with the concomitant elevation of intraabdominal pressure, causes local and systemic effects that have been only partly elucidated. Portal blood flow, which plays an important role in hepatic function and cell-conveyed immune response, is one of the affected parameters. An established animal model (rat) of laparoscopic surgery was extended by implanting a periportal flow probe. Hemodynamics in the portal vein were then measured by transit-time ultrasonic flowmetry during increasing intraabdominal pressure (2-12 mmHg) caused by gas insufflation (carbon dioxide vs helium). The installation of the pneumoperitoneum with increasing intraperitoneal pressure led to a significant linear decrease in portal venous flow for both carbon dioxide and helium. At higher pressure levels (8-12 mmHg), portal blood flow was significantly lower (1.5-2.5-fold) during carbon dioxide pneumoperitoneum. An intraabdominal pressure of 8 mmHg caused a decrease to 38.2% of the initial flow (helium, 59.7%); whereas at 12 mmHg, portal flow was decreased to 16% (helium, 40.5%). Elevated intraabdominal pressure generated by the pneumoperitoneum results in a reduction of portal venous flow. This effect is significantly stronger during carbon dioxide insufflation. Portal flow reduction may compromise hepatic function and cell-conveyed immune response during laparoscopic surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call