Abstract

A two-channel planar laser-induced fluorescence technique is used to study mixing and reactions between two initially distant scalars in the turbulent wake of a cylindrical obstacle. The scalars are released continuously and isokinetically upstream of the cylinder, with a lateral separation that initially impedes mixing between them. The effect of the turbulent wake on mixing and reaction enhancement is determined by measuring the segregation parameter for cases with and without the cylinder obstruction. Results indicate that scalar mixing and reaction rates (in the low-Damkohler limit) increase significantly in the presence of the cylinder wake. The study also shows that the dominant contribution of total reaction derives from the scalar covariance associated with instantaneous flow processes, and depends strongly on streamwise location within the wake. The results have broad implications for mixing processes in engineering and ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call