Abstract

The rotary seal is a key component of the aero engine. Under actual working conditions, most rotary seals always operate in an eccentric state (caused by installation errors), and when a large eccentricity occurs, it may lead to a large amount of gas leakage, resulting in a decrease in aero engine efficiency, which ultimately affects the reliability and life of the aero engine. Therefore, the effect of installation error on the rotary seal of the aero engine was studied in this research. The flow field numerical models of the honeycomb seal, labyrinth seal, and hybrid labyrinth–honeycomb seal were established, the effects of the honeycomb seal, labyrinth seal, and hybrid labyrinth–honeycomb seal on leakage were numerically analyzed, the sealing mechanisms of three types of seals were revealed, and the effect of radial eccentricity on the leakage of three types of seals was also studied. Additionally, the high-pressure and high-speed rotary seal experiment bench was improved, the effect of eccentricity on the leakage characteristics of the honeycomb seal, labyrinth seal, and hybrid labyrinth–honeycomb seal was studied using the improved experiment bench, and the leakage characteristics of the three types of seals were compared under the same condition. The experimental results are consistent with the numerical simulation results; the honeycomb seal is the least sensitive to eccentricity, and its sealing performance is the best. The research results in this paper reveal the seal mechanisms of the honeycomb seal, labyrinth seal, and hybrid labyrinth–honeycomb seal and demonstrate the effect law of eccentricity regarding the leakage characteristics of these three types of seals. The results of this research can provide theoretical support for aero engine efficiency improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.