Abstract

The presence of seasonal algal blooms with harmful algae-derived organic matters threatens the performance of ultrafiltration in drinking water treatment. The hybrid process of in-situ ozonation with ceramic ultrafiltration membrane was proposed for the treatment of algal-rich water with effective removal of algal cells and mitigation of membrane fouling. The mechanism of membrane fouling mitigation with in-situ ozonation was systematically investigated from the perspective of cake layer, gel layer and membrane pore blocking. The results showed that in-situ ozonation treatment can effectively mitigate membrane fouling. For instance, transmembrane pressure was reduced by 75.8% with in-situ ozonation at 1mg/L. In-situ ozonation resulted in the formation of a more porous and thinner cake layer due to the disintegration of extracellular organic matters that attached on the algal surface. Besides, the portion of very high molecular weight biopolymers (around 100kDa) and the hydrophobic fraction of algae-derived organic matters, the main component intercepted by the ceramic membrane, were reduced with in-situ ozonation and thus leaded to less severe gel layer fouling. Furthermore, in-situ ozonation induced the accelerated organics degradation within the ceramic membrane pores, alleviating the membrane pore blocking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.