Abstract

Magnetization switching via charge current induced spin-orbit torques (SOTs) in heavy metal/ferromagnetic metal/heavy metal heterostructures has become an important issue due to its potential applications in high stability and low energy dissipation spintronic devices. In this work, based on a Pt/Co/Ta structure with perpendicular magnetic anisotropy (PMA), we report the effect of inserting a non-metal C interlayer between Co and Ta on the current-induced magnetization switching. A series of measurements based on the extraordinary Hall effect were carried out to investigate the difference of the anisotropy field, switching field, and damping-like and field-like SOT-induced effective fields as well as the current-induced spin Hall effect (SHE) torque after C decoration. The results show that PMA can be reduced by C decoration and the ratio of the effective SHE torque per unit current density and anisotropy field plays an essential role in the switching efficiency. In addition, the obtained switching current density has a quite low value around the order of 106 A/cm2. Our study could provide a way for achieving the low switching current density by manipulating PMA in SOT-based spintronic devices through interface decoration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.