Abstract

The space heating in residential buildings in winter accounts for a considerable amount of conventional energy. Therefore, improving the performance of space heating systems with the inclusion of renewable energy sources like solar becomes crucial in order to have better occupant’s comfort while reducing energy use. Phase change material (PCM) is one of the best solutions for renewable energy, especially solar, which is intermittently available. PCM stores energy when surplus energy is available and delivers whenever it is required. It is integrated with the current system for energy storage as well as availing heat at a constant temperature. The present study will try to demonstrate the energy-saving by implementing the local heating with a spiral latent heat thermal energy storage system, when only a particular (local) space heating is of interest. In this work, an experimental as well as the numerical study of a dome over a bed was performed. Various heating coil configurations, namely floor coil, roof zig-zag, and roof spiral, were constructed to find the best configuration for the localized space heating. Experiments and simulations with the variable flow rate (0.25, 0.50, and 0.75 m/s) and varying inlet temperatures (55, 60, and 65°C) of the heat transfer fluid were carried out. It was found that the floor coil heating gives better results as compared with the other two. It was also seen that the effect of mass flow rate and inlet temperature was not that much significant after a limit. A temperature difference of 20°C was maintained between the space under consideration with the surrounding room.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.