Abstract

Hydrometallurgy recycling of heavy metals from electroplating sludge is of hot spot in recent decades. Such recycling was tedious in the separation of impure Fe/Al prior to heavy metals from acid leachate after sludge dissolution. Herein, a facile hydrothermal route was developed to separate Fe/Al from Cu-bearing leachate. The results showed that when the leachate was directly hydrothermally treated at 160°C in the presence of nitrate and ethanol, Al/Cu were stable in the leachate, but nearly 100% Fe was removed as hematite nanoparticles. With the addition of chloridion, the removal efficiencies of Fe/Al/Cu did not change apparently, but the corresponding precipitate was akageneite, not hematite. By replacing chloridion with sulfate, nearly 100% Fe and 98.6% Al were separated as natrojarosite/natroalunite block, while the Cu loss was only 1.7%. However, with the supplementary of phosphate, the Fe/Al removal achieved nearly 100%, but the Cu removal also achieved by 92.6%. The thermodynamic analysis showed that Cu was precipitated rapidly via the phosphate/Cu oxyhydroxide route by adding phosphate but removed slightly via the coordination route on the Fe/Al precipitates with the addition of nitrate, chloridion, and sulfate. In summary, Fe was effectively separated as hematite, akageneite, natrojarosite, and phosphate halite, in the presence of nitrate, chloridion, sulfate, and phosphate, separately. But the removal of Al as natroalunite and AlPO4 only started by adding sulfate and phosphate, respectively. Such results enabled a short hydrometallurgy process to effectively recycle heavy metals from electroplating sludge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.