Abstract

A plant's tolerance to heavy metals (HMs) and its detoxification mechanisms are associated with the subcellular distribution of HMs and their chemical forms. In this study, water spinach (Ipomoea aquatica Forsk.) was grown in two soils contaminated with a single HM (cadmium, Cd) or combined HMs (Cd and nickel, Ni). Inoculation of arbuscular mycorrizal fungi (AMF) was conducted to increase the accumulation of phosphorus (P) in plants. One major exception was to decrease the migration and accumulation of HMs in edible parts by the formation of P-HM complexes. The effects of blanching and simulated digestion on bioaccessibility were also assessed. The experimental results showed that the water spinach species used in this study had a high capacity to accumulate HMs. AMF treatment improved water spinach growth and decreased the accumulation of Ni but not that of Cd. Soluble and inorganic Cd and Ni were the major subcellular fractions and chemical forms in water spinach; these two HMs also exhibited higher migration capacities in comparison to chromium (Cr). Relative to raw tissues, 45–84% of Cd, Cr, and Ni were leached after blanching. Approximately 32–55%, 16–50%, and 27–40% of Cd, Cr, and Ni, respectively, were bioaccessible and could be metabolized by in vitro digestive fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.