Abstract

A new micromechanics model based on the second-order moment of stress is established to investigate the effect of gas pressure on the nonlinear macroscopic constitutive relationship of the porous materials. The analytical method agrees well with numerical simulation based on the finite element method. Through a systematic study, we find that the gas pressure has a prominent effect on the nonlinear deformation behavior of the porous materials. The gas pressure can cause tension–compression asymmetry on the uniaxial stress–strain curve and the nominal Poisson’s ratio. The pore pressure significantly reduces the initial yield strength and failure strength of the porous metals, especially when the relative density of the material is small. The gas phase also strongly compromises the composite strength when the temperature is increased. The model may be useful for the evaluation of mechanical integrity of porous materials under various working conditions and working temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.