Abstract
This study investigates the effect of inlet wetness on transonic wet-steam and moist-air flows through turbine and compressor cascade channels. We first simulated the transonic wet-steam flows through a Bakhtar’s turbine cascade channel under wind-tunnel conditions with inlet wetness. We then predicted the effects of inlet wetness on the moist-air flows expected through an aircraft engine and an industrial gas turbine. For this purpose, we simulated the transonic moist-air flows through a transonic compressor cascade channel while changing the inlet wetness conditions. In both wet-stream and moist-air flows, the inlet wetness was quite sensitive to the growth and evaporation rates of the water droplets, and greatly influenced the shock location. Our results for moist-air flows suggest that the temperature beyond the shock is effectively decreased by a large number density of smaller water droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.