Abstract
Abstract A large eddy simulation (LES) study was performed on a turbulent incompressible wake flow in a rectangular channel. The simulation results were evaluated using particle image velocimetry (PIV) data from a previous experimental study of the same flow (Liu et al., 2013). Comparisons were made of one-point statistics as well as spatial correlations. An extensive pre-simulation study was carried out in which the effect of inlet conditions, grid resolution, time step and subgrid model was investigated and the parameters were optimized. Using the digital filter method of Klein et al. (2003), turbulent inflow velocities were generated based on velocity mean and variance obtained from the experimental data and correlation length scales. It was found that the simulation results in large parts of the domain were strongly dependent on the inlet length scales specified. With a suitable set of length scales, the inlet method was successful at providing inlet conditions that generated accurate simulation results. The very good agreement seen between experiment and simulation demonstrates LES as a method that, with carefully selected inlet conditions, not only can predict the pointwise turbulence statistics of a liquid wake flow, but also capture key features of its large-scale turbulent structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.