Abstract

Renewable fuels are alternative resources that find use in the power generation, agricultural, and transportation sectors. The sustainable utility of these renewable fuels mostly addresses the socio-economic issues of a country and reduces its dependency on fossil fuels. In addition, being environmentally friendly allows them to handle global warming more effectively. Two B20 fuel blends were produced using methyl esters of cashew nutshell and jamun seed oils to test the performance of the common rail direct injection engine. To improve the engine performance, injection parameters such as nozzle geometry, injection time, and injector opening pressure are used. Improved brake thermal efficiency and lower emissions of smoke, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) were achieved with the help of advancing the injection timing, raising the injector opening pressure, and increasing the number of injector nozzle holes. In addition to reducing the ignition delay, extending the combustion duration, and increasing the peak pressure, the revised injection settings also boosted the heat release rates. At the maximum load, compared to CHNOB B20, JAMNSOB B20 showed a significant rise in the brake thermal efficiency (BTE) by 4.94% and a considerable decrease in smoke emissions (0.8%) with an increase in NOx (1.45%), by varying the injection timing, injection pressure, and nozzle geometry of the common rail direct injection (CRDI) engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call