Abstract

It is generally considered that the injection of charges into an active layer of an organic light-emitting diode (OLED) is solely determined by the energetic injection barrier formed at the device interfaces. Here, we demonstrate that the density of surface states of the electron-injecting ZnO layer has a profound effect on both the charge injection and the overall performance of the OLED device. Introducing a dopant into ZnO reduces both the energy depth and density of surface states without altering the position of the energy levels-thus, the magnitude of the injection barrier formed at the organic/ZnO interface remains unchanged. Changes observed in the density of surface states result in an improved electron injection and enhanced luminescence of the device. We implemented a numerical simulation, modeling the effects of energetics and the density of surface states on the electron injection, demonstrating that both contributions should be considered when choosing the appropriate injection layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.